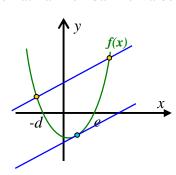
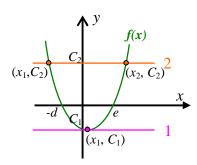

MENCARI NILAI MAKSIMUM atau MINIMUM PERSAMAAN KUADRAT DENGAN METODE GRADIEN

Mengapa mencari nilai maksimum dan minimum pers. kuadrat dengan metode kemiringan = gradien = dy/dx = m = 0?


Perhatikan kurva persamaan kuadrat berikut ini:

Bila diberikan sebuah titik \bullet (x, y) sembarang dan coba diterapkan di sepanjang kurva, maka akan ditemukan titik sebanyak tak berhingga yang cuma satu diantaranya itu yang menjadi titik puncaknya \bullet .

Dengan demikian, mencari nilai maksimum atau minimum dengan bermodalkan titik amatlah suuu.....lit.

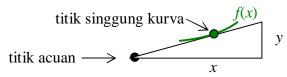

Perhatikan kembali kurva berikut ini:

Bila diberikan sebuah garis (LINTASAN TERPENDEK 2 TITIK) yang kebetulan cukup miring, maka bila kita geser – geser akan kita dapatkan 2 titik • di sepanjang kurva dan akhirnya terakhir 1 titik • saja. Sayangnya titik terkhir ini secara grafik bukanlah titik maksimum ataupun minimum kurva.

Jangan menyerah....!!

Kembali coba lihat kurva ini lagi:

Nah, sekarang bila garisnya dibuat mendatar sejajar dengan sb. x dan kita geser – geser akhirnya akan kita dapatkan satu titik • istemewa, yakni nilai maksimum atau minimum kurva.


Grafik di samping nilai titiknya minimum (di titik terendah kurva).

Jadi, kemiringan garis = 0 dapat menunjukkan nilai maksimum atau minimum kurva.

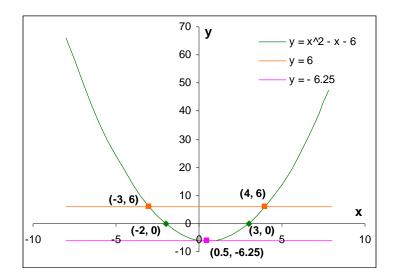
Miring 90° = tegak (vertikal), ingat film *Vertical Limit*??

Miring 0° = mendatar (horisontal), ngga ada film-nya.

Miring C° = berarti membandingkan tinggi (y) sesuatu terhadap proyeksinya (x) dari suatu titik acuan. Lihat segitiga berikut

Lantas apa bedanya garis 1 dan 2 ? Bukankah sama – sama mendatar dy/dx = m = 0 ? Mengapa garis 2 mendapatkan 2 titik • di kurva sedangkan garis 1 hanya 1 titik • dan itulah titik maksimum atau minimumnya? Apa beda y/x dengan dy/dx dalam mencari gradien?

Gradien dari y/x berasal dari sudut pandang parsial kurva, sedangkan dy/dx memandang keseluruhan kurva terhadap titik – titik uji sepanjang kurva. Meski demikian, keduanya sama secara sederhana.


Garis 2 dapat terjadi sebanyak tak berhingga di sepanjang kurva. Misal pers. garis 2 $y_2 = mx + C_2$. karena m = 0, maka $y_2 = C_2$. Bila kurva $f(x) = ax^2 + bx + c$ terpotong garis 2, maka $f(x) = y_2$, dan kita akan peroleh 2 titik \bullet , yakni (x_1, C) dan (x_2, C) .

Contoh: Garis y = 6 memotong kurva $y = x^2 - x - 6$ akan berpotongan di titik

$$y$$
 kurva kuadrat = y garis
 $x^2 - x - 6 = 6$
 $x^2 - x - 12 = 0$
 $(x+3)(x-4) = 0$
 $x+3=0$ dan $x-4=0$
 $x_1=-3$ dan $x=4$

Jadi, titik potongnya (-3,6) dan (4,6). Dengan bantuan pemrograman worksheet atau pemrograman matematika lainnya kita dapatkan grafiknya, yakni

X	-8	-7	-6	-5	-4	-3	-2	-1	0	0.5	1	2	3	4	5	6	7	8
У	66	50	36	24	14	6	0	-4	-6	-6.25	-6	-4	0	6	14	24	36	50

Bagaimana dengan garis gradiennya? Nah, garis 1 merupakan garis gradien yang diperoleh dari KURVAnya dan bukan persamaan garis karena tidak menghubungkan 2 titik. Sehingga titik maksimum atau minimumnya terjadi di satu titik saja (x,C_2) . Dengan metode gradien dy/dx = 0, maka kurva $y = x^2 - x - 6$ memiliki

$$dy/dx = d(x^2 - x - 6)/dx$$
$$0 = 2x - 1$$
$$x = \frac{1}{2}$$

dan pada $x = \frac{1}{2}$ ini memberikan nilai y = -6.25 yang merupakan nilai minimum kurva.

Nilai maksimum atau minimum pers. kuadrat pada metode kuadrat sempurna sebelumnya dapat dicari dengan persamaan $y_e = -D/4a$. Bagaimana kaitannya dengan metode gradien?

Bila
$$f(x)=ax^2 + bx + c$$
, maka
$$\frac{dy/dx = d(ax^2 + bx + c)/dx}{0 = 2ax + b}$$
 maks. / min.
$$\frac{0}{x} = -b/2a \quad \text{`a titik } x_e \text{ (nilai } x \text{ puncak} = x \text{ ekstrim)}$$

dan bila disubstitusikan nilai x_e ini ke $f(x)=ax^2+bx+c$ akan didapatkan $y_e=-D/4a$. Jadi, semuanya terkait dan saling memperjelas.

Terakhir bagaimana mengetahui dy/dx = 0 dari suatu pers. kuadrat akan maks. atau min? Ah, mudah itu cek saja bila konstanta a (+) kurvanya akan \cup berarti nilai dy/dx = 0 akan memberikan nilai minimum dan sebaliknya, oke...

Catatan:

- Berkas ini gratis untuk tujuan non komersial
 Berkas ini termotivasi atas pengalaman saat pengajaran persiapan UN Karisma MNF Jan 09
- 3. Berkas ini untuk "pendidikan yang terjangkau" bagi seluruh anak bangsa Indonesia